On weak conditional convergence of bivariate Archimedean and Extreme Value copulas, and consequences to nonparametric estimation

نویسندگان

چکیده

Looking at bivariate copulas from the perspective of conditional distributions and considering weak convergence almost all yields notion convergence. At first glance, this for might seem far too restrictive to be any practical importance – in fact, given samples a copula C corresponding empirical do not converge weakly with probability one general. Within class Archimedean Extreme Value copulas, however, standard pointwise can even proved equivalent. Moreover, it shown that every is limit sequence checkerboard copulas. After proving these three main results pointing out some consequences, we sketch implications two recently introduced dependence measures nonparametric estimation

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Archimedean copulas

Convergence of a sequence of bivariate Archimedean copulas to another Archimedean copula or to the comonotone copula is shown to be equivalent with convergence of the corresponding sequence of Kendall distribution functions. No extra differentiability conditions on the generators are needed. r 2007 Elsevier B.V. All rights reserved.

متن کامل

Nonparametric estimation of conditional value-at-risk and expected shortfall based on extreme value theory

Abstract. We propose nonparametric estimators for conditional value-at-risk (VaR) and expected shortfall (ES) associated with conditional distributions of a series of returns on a financial asset. The return series and the conditioning covariates, which may include lagged returns and other exogenous variables, are assumed to be strong mixing and follow a fully nonparametric conditional location...

متن کامل

Modelling the Dependence of Parametric Bivariate Extreme Value Copulas

In this study, we consider the situation where contraints are made on the domains of two random variables whose joint copula is an extreme value model. We introduce a new measure which characterize these conditional dependence. We proved that every bivariate extreme value copulas is totally characterized by a conditional dependence function. Every twodimensional distribution is also shown to be...

متن کامل

Functional nonparametric estimation of conditional extreme quantiles

− We address the estimation of quantiles from heavy-tailed distributions when functional covariate information is available and in the case where the order of the quantile converges to one as the sample size increases. Such ”extreme” quantiles can be located in the range of the data or near and even beyond the boundary of the sample, depending on the convergence rate of their order to one. Nonp...

متن کامل

Rank - Based Inference for Bivariate Extreme - Value Copulas

Consider a continuous random pair (X, Y) whose dependence is characterized by an extreme-value copula with Pickands dependence function A. When the marginal distributions of X and Y are known, several consistent estimators of A are available. Most of them are variants of the estimators due to Pickands [Bull. In this paper, rank-based versions of these esti-mators are proposed for the more commo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2021

ISSN: ['1573-9759', '1350-7265']

DOI: https://doi.org/10.3150/20-bej1306